Pat O'Sullivan

Mh4718 Week 8

Week 8

0.1 Solving Differential Equations

We will consider only differential equations which can be written in the form:

$$
\frac{d y}{d x}=F(x, y)
$$

Examples:
$-\frac{d y}{d x}=y$, that is $F(x, y)=y$.
$-\frac{d y}{d x}=\sqrt{1-y^{2}}$, that is $F(x, y)=\sqrt{1-y^{2}}$.
$-\frac{d y}{d x}=\frac{2 y}{x}$, that is $F(x, y)=\frac{2 y}{x}$.
If $f(x)$ is a solution for the equation $\frac{d y}{d x}=F(x, y)$ then

$$
\frac{d f(x)}{d x}=F(x, f(x))
$$

In general there is more than one solution to a well formed differential equation. For example, $y=e^{x}$ and $y=3 e^{x}$ are both solutions of the d.e. $\frac{d y}{d x}=y$. In fact, it is easy to see there are infinitely many solutions to this d.e. In order to pick out a unique solution we need to specify what are known as initial values for a solution. That is, we must specify one value which a solution must have at a particular point.
For example if we said that we want a solution of $\frac{d y}{d x}=y$ with $y(0)=1$ then we see that $y=e^{x}$ satisfies the equations and has $y(0)=1$ but $y=3 e^{x}$ does
not have the required so-called initial values.
Note that specifying initial values is the same as specifying a point which must be on the graph of the solution.
$(0,1)$ is on the graph of $y=e^{x}$ but is not on the graph of $3 e^{x}$.
A differential equation $\frac{d y}{d x}=F(x, y)$ together with initial values $y\left(x_{0}\right)=y_{0}$ is called an initial value problem. (IVP)

If certain conditions are fulfilled, an inital value problem has precisely one solution. We have the following theorem:

Theorem 0.1

If F and $\frac{\partial}{\partial y} F(x, y)$ are continuous in a rectangle containing the point $\left(x_{0}, y_{0}\right)$ then the initial value problem

$$
\frac{d y}{d x}=F(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

has a unique solution $y=f(x)$ defined in some open interval around x_{0}.

The initial value problem supplies us with enough information to determine the Taylor expansion around the intitial value x_{0} for the unique solution.

Example 0.2

(i) We already know that the IVP $\frac{d y}{d x}=y, y(0)=1$ has solution $y=e^{x}$. but we can construct the Taylor series around 0 for this solution from the IVP as follows:

$$
y(x)=y(0)+y^{(1)}(0) x+y^{(2)}(0) \frac{x^{2}}{2!}+y^{(3)}(0) \frac{x^{3}}{3!}+\ldots
$$

Using this notation the IVP is

$$
y^{(1)}(x)=y(x), y(0)=1
$$

And so we have

$$
\begin{aligned}
& y(0)=1 \\
& y^{(1)}(x)=y \Rightarrow y^{(1)}(0)=y(0)=1 \\
& y^{(2)}(x)=y^{(1)}(x)=y \Rightarrow y^{(2)}(0)=y(0)=1 \\
& y^{(3)}(x)=y^{(2)}(x)=y \Rightarrow y^{(3)}(0)=y(0)=1
\end{aligned}
$$

Continuing like this we have

$$
y(0)=1, y^{(1)}(0)=1, y^{(2)}(0)=1, y^{(3)}(0)=1, y^{(4)}=1 \ldots
$$

and so we get the Taylor series

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

which we recognise as the Taylor series for e^{x}.
If we didn't know it already we could now conclude that the solution $y(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=e^{x}$
(ii) Consider the IVP

$$
\frac{d y}{d x}=\frac{2 y}{x}, \quad y(1)=1
$$

We can attempt to solve this using a Taylor series again.

$$
\begin{aligned}
& y(1)=1 \\
& y^{(1)}(x)=\frac{2 y(x)}{x} \Rightarrow y^{(1)}(1)=\frac{2 y(1)}{1}=\frac{2}{1}=2 \\
& y^{(2)}(x)=\frac{2 y^{(1)} x-2 y}{x^{2}}=\frac{2 \frac{2 y}{x} x-2 y}{x^{2}}=\frac{4 y-2 y}{x^{2}}=\frac{2 y}{x^{2}} \\
& y^{(2)}(1)=\frac{2}{1}=2 \\
& y^{(3)}(x)=\frac{2 y^{(1)} x^{2}-4 y x}{x^{4}}=\frac{2 \frac{2 y}{x} x^{2}-4 y x}{x^{4}}=\frac{4 y x-4 y x}{x^{4}}=0
\end{aligned}
$$

Therefore we get the finite Taylor expansion

$$
y(x)=1+2(x-1)+2 \frac{(x-1)^{2}}{2!}=x^{2}
$$

